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Elastic models: a comparative study applied to retinal 
images 
 

 

Abstract 

In this work various methods of parametric elastic models are compared, namely the 

classical snake, the gradient vector field snake (GVF snake) and the topology-adaptive 

snake (t-snake), as well as the method of self-affine mapping system as an alternative to 

elastic models. We also give a brief overview of the methods used. The self-affine 

mapping system is implemented using an adapting scheme and minimum distance as 

optimization criterion, which is more suitable for weak edges detection. All methods are 

applied to glaucomatic retinal images with the purpose of segmenting the optical disk. The 

methods are compared in terms of segmentation accuracy and speed, as these are derived 

from cross-correlation coefficients between real and algorithm extracted contours and 

segmentation time, respectively. As a result, the method of self-affine mapping system 

presents adequate segmentation time and segmentation accuracy, and significant 

independence from initialization. 

 

Keywords: image segmentation, snakes, GVF snakes, T-snakes, self affine mapping 

system 
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I. Introduction 

 Image segmentation is an important preprocessing step in the field of medical imaging. It 

is used especially in automatic anatomical structure and pathological areas detection. 

Image segmentation has been used in diagnoses and detection of pathologies, in 

quantization of tissue volume, in planning therapy, in computer-integrated surgery, in the 

correction of partial volume in PET, in the detection of coronary arteries in angiographies, 

in automatic classification of blood cells, in mapping brain functions, etc [1]. 

 Because of the variety of object shapes and the variance in image quality, image 

segmentation remains a difficult task. There does not exist a catholic image segmentation 

method that can be applied with success in any imaging study. Every segmentation 

algorithm aims at the detection of the image pixels that belong to the object of interest. The 

methods that try to detect the area of an object rely on the intensity or texture values of 

image pixels, while the segmentation techniques that search for object boundaries use the 

image derivatives that present high values near the object boundaries. 

 Elastic models are the most popular image segmentation techniques. They are designed 

to approximate the significant variance of biological structures with time and from person 

to person. Elastic models are curves or surfaces defined on image domain that deform 

under the influence of internal and external forces. Internal forces are related to the curve 

or the surface itself and are designed to keep the model smooth during the deformation 

process. External forces adjust the model to the real object boundary and their computation 

is based on image information and. In theory, because of the constrain for smooth contours 

and their ability to incorporate a priori information for object shape, elastic models can 

handle noise problems in images and contour discontinuities. So, they permit the 
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description of the contour as a continuous mathematical model and they are able to achieve 

inter-pixel segmentation accuracy.  

 In the bibliography elastic models can be found as deformable models, active contours or 

surfaces and snakes. The mathematical foundation of elastic models is based on a 

contribution of geometry, physics and approximation theory. Object shape is represented 

by geometric lows. Physics apply constrains in the deformation process through space and 

time. Approximation theory offers the fitting mechanisms of the model to the real object 

boundary. Most elastic models are connected to an energy function that is determined 

according to the geometrical degree of freedom. The energy function increases as the 

model draws away from the real boundary. Usually the energy function contains terms 

related to the elastic forces internal to the model. Approximation theory imposes another 

energy term, the function of external forces that create an external energy field. 

 Elastic models are divided into parametric elastic models and geometric elastic models. 

Parametric models are parametric curves or surfaces that evolve according to the Lagrange 

equation. Geometric models present curves or surfaces as the level sets of higher-

dimensional scalar functions. Geometric models evolve according to the curve evolution 

theory [2]. 

 In this work various methods of parametric elastic models are presented, namely, the 

classical snake [3][4][5][6], the gradient vector field snake (GVF snake)[7][8][9][10] and 

the topology-adaptive snake (t-snake)[11][12][13][14]. Also, the method of self-affine 

mapping system[15][16] is presented as an alternative of the elastic models. The self-affine 

mapping system is implemented using an adapting scheme for determining the size of 

areas with similarity, and minimum distance as optimization criterion which, according to 

Section III.a (Results), is more suitable for weak edges detection. All methods are applied 
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to glaucomatic retinal images with the purpose of segmenting the optical disk. Moreover, 

the aforementioned methods are compared in terms of segmentation accuracy. 

 The optical disk is the optical nerve and the vessels’ entrance point in the retina. In 

fundus gray images it appears as a luminous white area. It has an almost round shape that 

is interrupted by the outgoing vessels. Some times the optical disk has an elliptical shape 

because of the small but not negligible angle between the planes of the image and the 

object. Optical disk size varies from patient to patient. 

 Optical disk segmentation consists in a very important preprocessing stage of many 

algorithms, which have been designed for automatic detection of retinal anatomical 

structures and pathological conditions. For example the detection methods of some vessels 

and their junctions start from the optical disk area, where the big vessels lie. These can 

serve as starting points for the detection of the other vessels[17]. Also, macula’s position 

usually is estimated according to the optical disk’s position under the condition that the 

distance between the macula and the optical disk is constant [18][19]. Moreover, optical 

disk camouflage contributes to better and easier lesions detection related to different 

retinopathies [20]. Furthermore, the optical disk center can be used as a reference point for 

distance measurements in retinal images. In addition, the optical disk can be a reference 

area for the registration of retinal images acquired in different time or with a different 

method. Retinal images registration can reveal changes in vessels’ size and disposition 

inside the optical disk, as well as changes in optical disk size related to serious eye 

diseases, such as glaucoma and vessels neoplasia[21]. 

 In Section II some theoretical aspects of the methods under comparison are presented. 

The results of the comparison are presented in Section III and are analyzed in Section IV. 

Section V contains the conclusions. 
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II Elastic Models Segmentation Methods 

 In this part we give an overview of four methods for image segmentation: the classical 

snake, the gvf snake, the t-snake and the self-affine mapping system. In sections B and C 

we will be using the notation introduced in section A. 

A. Classical Snake 

 

The classical snakes are used widely in image processing, in computer vision and in 

medical imaging applications for allocating object boundaries. The classical parametric 

elastic models (classical snakes), due to Kass, Witkin and Terzopoulos[3] change shape 

and finally are adapted to the real object boundary according to the minimization process 

of an energy function. The energy function reaches its global minimum when the active 

contour is smooth and coincides with the real object boundary [3][4][5][6]. An active 

contour is represented by a curve ))(),(()( sysxsX =
G

in 2D or a surface 

))(),(),(()( szsysxsX =
G

 in 3D, [0,1] ∈s . Active contours crawl like snakes on the image 

plane or space with the purpose of energy minimization. The energy function is defined as: 
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determines the rigidity of the model. Parameters and )(sa )(sβ  specify elasticity and 

rigidity levels of the model respectively. In general, coefficients  and a β  are able to 

change with time and along the active contour. In most applications they are positive 

constants. The term  in Eq. 1 is the function of the dynamic energy defined as: )(XP
G

 ))(()(
1

0
∫= dssXPXP

GG
   (3) 

The function )(XP
G

 is determined according to image data I. In the case of a 2D image its 

typical form is: 

( ) 2),(),( yxGwyx ∗∇−= σP ),( yxI    (4) 

where  a positive constant and a 2D Gaussian with standard deviation w ),( yxGσ σ . 

Actually, )(XP
G

∇  represents the external Gaussian potential force , which pushes the 

snake to the true object boundary when the initial snake model is placed near the real 

object contour. Its range depends on the value of 

GF

σ . Big values of σ  increase the force’s 

range but blur and adulterate the final contour. 

 Another external force that is widely used in snake applications is pressure force  

determined as:   

pF

)(XFp Nwp
GG

   (5) =

where )(XN
GG

 the unit vector perpendicular to the snake in position X
G

 with direction 

inwards the snake curve, and  a constant that determines whether the pressure force 

will contract or dilate the snake. The value of  must be such that the pressure force is 

slightly smaller than the Gaussian potential force. Also, the value of w  ought to be large 

enough, so as the snake model to avoid weak or false edges. 

pw

pw

p
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 The curve that minimizes the energy )(XE
G

 satisfies the Lagrange equation: 
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Other external forces are distance potential force and interactive forces. 

 

B. Gradient Vector Flow Snake (GVF snake) 

 

 The use of classical snake is unfortunately limited because they must be initialized close 

to the true contour and because of their inefficient convergence in boundary concavities. 

Xu and Prince proposed an improved snake model in order to overcome classical snakes’ 

limitations[7]. In particular, they introduced a new external force, the gradient vector flow 

(GVF), that is computed as the diffusion of gradient vectors of a gray or binary edge map 

of the image. According to Xu and Prince, the usual external forces are conservative forces 

that make the active contour unable to successfully approximate boundary concavities. 

GVF is a non-conservative force. Mathematically, it is based on the Helmholtz theorem, 

according to which a general static vector field can be separated in a conservative and 

tubular field. GVF snakes were designed to have conservative and tubular characteristics in 

order to present the desirable properties of adequate initialization range and convergence in 

boundary concavities [7][8][9]. Suppose that ),( yxvFext =  is the new GVF external force. 

Then, according to the force equilibrium: 

0)),((),(),(
4
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∂ tsXv
s

tsX
s

tsXa
GG

GG
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 In GVF snakes also defined an edge map  computed by image data. The edge 

map presents high values near image edges. For gray images the edge map is defined as 

),( yxf
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),(),( yxIyxf ∇=  or [ ]),(),(),( yxIyxGyxf ∗∇= σ , the latter in case of gray images 

with high noise levels. The GVF field determined as [ ]),(),,(),( yxyxuyxv υ=
G  minimizes 

the energy function:  

( )∫∫ ∇++++=Ε fuu yxyx
22222 ∇− dxdyfv 2G    (8) υυμ

where μ  is the linear or surface mass density. With the help of calculus variations analysis 

the GVF field is computed by solving the following Euler equations: 

( )( )
( )( ) ⎪⎭

⎪
⎬
⎫

=+−−∇

=+−−∇

0

0
222

222

yxy

yxx

fff

fffuu

υυμ

μ
   (9) 

If u  and υ  are functions of time, the solution of Eq. 8 is: 
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C. Topologically Adaptable Snake (T-snake) 

 

 T-snakes comprise another variant of classical snakes. They are based on a space 

partitioning technique to create topologically adaptable snakes. The difference between the 

classical snake and T-snake is the use of an affine cell image decomposition, so as to 

iteratively reparametrize the snake and to make topological transformations. Image is 

partitioned into a net of discrete triangular cells. As the snake evolves under the influence 

of internal and external forces, it is reparametrized with a new set of nodes and elements. 

The reparametrization process consists of an efficient calculation of the intersections of the 

snake with the image net. These intersection points might be nodes of the updated T-snake. 

In 2D the T-snake is a 2D curve consisting of N nodes connected in series. The T-snake is 
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a discrete version of the classical snake and retains many of its properties [11][12][13][14]. 

The nodes have time varying positions ( ) ( )[ ]tytxX iii ,=
G

, Ni ,...,2,1= . The snake is 

deformed according to elastic forces ( )tai , rigidity forces ( )tiβ , pressure forces ( )tiρ  and 

external forces  that act on the image field. In order to generate a closed curve a 

periodic constrain is applied, namely

( )tfi

NXX
GG

=1 . The overall performance of the snake is 

based on a discrete and simplified equation of equilibrium: 

iiii fa
GGGG

+=+ ρβ    (11) 

 The pressure force ( )tiρ  is used as an external force to push the snake towards image 

edges until it is compensated by the external force ( )tfi . Pressure force is defined as:  

ii nyxIqF GG )),((=ρ    (12) 

where inG  is the unit normal vector to the snake at node i , and  the amplitude of the 

force.  is a binary function that connects the pressure force with image data:  

q

F

⎭
⎬
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≥+=

TyxIifyxIF
TyxIifyxIF

),(      ,1)),((
),(      ,1)),((

   (13) 

where T  is an image intensity threshold. The function  makes the T-snake contract 

when  and is used to prevent the snake from leaking into the background. To 

stop the snake at significant edges there is another external force included, , which is 

a force based on a Gaussian potential field: 

F

Ty <),xI (

( )tfi

( ) 2),(),( yxIyxGpfi ∗∇−= σ
G

   (14) 

The weights p  and q  are usually chosen to be of the same order, with p  slightly larger 

than , so a significant edge will stop inflation, but is large enough, so that the snake q q
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will pass from spurious edges without stopping at them. The update step of node position 

between time  and  is: t tt Δ+

( )t
i

t
i

t
i

t
i

t
i

t fbaatX
GGt

iX
GG Δ GG

−−−−=Δ ρβ
γ

+    (15) 

with  and b  being constants. Eq. 15 is unstable, unless small time steps are used. 

However, it is efficient, simple and can handle a variety of time steps that can create a 

stable T-snake behavior, and so an accurate segmentation result. 

a

 During the reparametrization step the interior of the snake is monitored by turning on any 

vertex of the image net cells from which the snake passes. Because of the net, the snake 

model is capable of topological transformations. This allows the snake to be independent 

of initial positioning, to crawl, and to efficiently attach to complicated object shapes with 

complicated topology in a stable manner. T-snakes combine space partitioning, internal 

reparametrization and topological flexibility of a geometric model with the properties of a 

parametric model. 

 

D. Self-Affine Mapping System 

 

 The self-affine mapping system is a technique similar to the snake model that adjusts an 

initial curve to the real object contour, using a self-affine mapping system which is used 

widely in fractal encoding. This particular method has an advantage over conventional 

snakes, mostly because of its ability to detect distinct and blurred edges with significant 

accuracy. It has replaced the process of energy minimization of the classical snake with a 

contractive self-affine mapping system that is used in the creation of fractal shapes. The 

parameters of the system are determined after a blockwise self-similarity analysis of the 
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gray image through a simplified algorithm of fractal coding. The use of the self-affine 

mapping system is due to the fact that the points of the initial map, when they are 

positioned near image edges after iterative contractions of the map, they are finally 

attached to the edges. This attraction can be exploited for contour extraction that has the 

shape of a curve of similar points rather than a curve of smooth points which are detected 

by the snake model [15][16]. 

 Suppose an image  is defined in . If there exist affine transformations 

nd  so that  

)(xg

1: R →

nRG ⊂

n
ii RAa →:  a 1Riβ

IiaggAx iii ,...,2,1))),((()(, ==∈∀  xx    β    (16) 

for some image regions , then the texture in  is similar to the texture in  

and the image presents self-similarity in these two regions. The set 

GAi ⊂ iA )( ii Aa

{ }I,..,2,iaA iii 1|,, =β , 

where I  is the total number of regions , is called self-affine model of the image. If Eq. 

16 holds then the following is also true:  

iA

IiaggAa iiii ,...,2,1))),((()(),( 11 ==∈∀ −−  xx  x  β    (17) 

giving rise to another self-affine model, { }IiaAa iiii ,..,2,1|,),( 11 =−− β

i

 of the image the set. 

The transformations  dilate maps and ia β  contract maps. 

 If Ω  is the set of subsets of  then the self-affine map G Ω→Ω:S  is defined as: 

CXAaXS
I

i
ii ∪

⎭
⎬
⎫

⎩
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⎧

∩=
=
∪

1
)()(    (18) 

where X  is a subset of G  and C a fixed set. When  X  i iss known its intersection with iA  

mapped through the affine transformation ia and the union of all these mapped regions 

with  results in the final map . 

 

 

C )X(S
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 For a 2D image ,  are squared image regions, subsets of G , and transformations 

 are defined as:  

2=n iA

ia

)()()(, iiiiii xxraAx ++−=∈∀ τxx    (19)  

and                                                       (20) 1>ir

where ix  the central point of . Moreover, the self-affine model assumes that:  iA

]1,0[,))(()))((( ∈+= iiiiii pqagpag xxβ    (21) 

 In order for map  to be determined, the regions  are first defined. Then an adequate 

algorithm searches for the best values of the parameters  and 

S iA

iii qpr ,, ),( iii ts=τ  of the 

map, so that Eq. 20 is satisfied for every  and, consequently, the self-affine models iA

{ }iii aA β,,  and { }11,), −−
iii aa β(i A  are determined. The searching is performed through a 

block-matching algorithm. The block-matching algorithm consists of the following steps: 

STEP 1: Initialization of r , s  and t . Moreover, the difference )))((()( xx ii aggE β−=  is 

assigned a very large value. 

STEP 2: For every  the value of  is computed. Because the sampling points  

may be between image pixels, the values  are computed using bilinear 

interpolation. 

iA∈x ))(( xiag x

))(( xiag

STEP 3: Initialization of  and . p q

STEP 4: Computation of )))((( xii agβ  for every iA∈x . 

STEP 5: Computation of the difference E . For this computation the Mean Square Error 

(MSN) or the Absolute Mean Distance (AMD) are usually used. If the new E  is smaller 

than the initial value, then the initial value is replaced by the new E , and the values of r , 

s , t ,  and  are registered as , , ,  and  respectively. p q ir is it ip iq
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STEP 6: If all  and  are checked then the algorithm moves to STEP 7, otherwise it goes 

back to STEP 4. 

p q

STEP 7: If all r , s , and t  are checked the algorithm is terminated, otherwise it goes back 

to STEP 2. 

 

 As in the conventional snake model, this method must be initialized by a rough contour. 

The pixels inside the initial curve take value 1 and the rest belong to the background 

having value 0. This way a binary image is created, called alpha mask. The purpose of the 

self-affine mapping system is the fitting of the alpha mask contour to the real object 

boundary. In order for the initial curve  to be attached to the real contour c  three 

conditions must be satisfied: 

b

1. the set c  must equal the invariable set S , 

2. the transformations 1−
ia  must be systolic, 

3. the set b  should be adequately close to c . 

 Moreover, parameters  which are defined during the block-matching process should 

be determined, so that every set  contains the corresponding , namely: 

ts,

)( ii Aa iA

ser
≤

−
−

2
1 , ert

2
1−

≤ , where is the size of regions . Finally, the total number of 

iterations 

e iA

ν  should be: 
r

e

log
2

log
>ν . 

 

III. Results 

 

a. A New Self-Affine Mapping System optimization criterion. 
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 In the self-affine mapping system the size of the areas  was chosen to be 

twice the size of the areas , namely 

)( ii Aa

iA 2=r  so as condition 2 to holds. The searching 

area for the block-matching process was ]
4

,
4

[ nn
− , where n  the size of the area . When 

the value of  is small (e.g. ) condition 3 is not satisfied, while when it is large (e.g. 

) condition 3 is satisfied, but the final contour is a rough approximation of the optic 

disk true boundary and condition 1 is now not satisfied and fine details of the object’s 

boundary are not detected. So, we chose an adapting scheme where  is assigned an 

initial big value ( ), which is gradually decreased to 

A

n 8=n

32=n

n

32=n 4=n , namely  and 

. The number of iterations was set to 

32maxe =

4min =e 1
log

2
log

+=
r

e

ν . In Eq. 21 p  was set to 1 and 

 to 0. As optimization criteria of measuring the difference between  and q

((gi

)(xg

)))(xaiβ , two criteria were tested and optically evaluated. The first was the classical 

AMD and the second was the Minimum Distance (MD).  

 Fig. 1 presents the final contours using 8=n  και 32=n  fused in the same optical image 

(Fig. 1a), and the final contour using the adapting scheme (Fig.1b). 

 From Fig.1b one can observe the strong attraction of mask boundary points from the 

vessels in the area of the optic disk. Vessels are strong edges. The AMD function is 

minimized towards these strong edges and the mask boundary points are caged from the 

edges of the vessels. Fig.2 shows a self-affine mapping system application, where MD was 

used instead of AMD. The application of MD results in the detection of optic disk 

boundary and not the detection of points that belong to strong edges, like the vessels. 
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However, the detection of weak edges reduces the degrees of freedom in mapping out the 

initial contour. Thus, MD is preferable for weak edges detection. 

 

b. Comparison of elastic models 

 

 The different segmentation methods were applied to 26 glaucomatic retinal images 

512x512 pixels in size, in order for the optic disk boundary to be extracted. The 

aforementioned optical disk segmentation techniques were applied to glaucomatic retinal 

images. Glaucoma results in local vessel deformations inside the optical disk. To detect 

such deformations with time image registration must be performed. Such a registration 

process consists of two steps. The first step uses global transformation for the area outside 

the optical disk, while the second applies local transformations for the area inside the 

optical disk. Hence, optical disk segmentation is a necessary preprocessing step. 

 For the implementation of the classical snake the external force derived from a Gaussian 

potential field with 3=σ  was used, accompanied with a pressure force with constant 

weights. In every position of the snake nodes, external force values were calculated using 

the bilinear interpolation method. Constant weights were also used for the internal forces. 

Initial contours were placed close to the real object boundary.  

 The GVF field was calculated according to the equations: 

( xiiii fufuuu −∇−∇+=+
2

1 4μ )    (22) 

( )yiiii ff −∇−∇+=+ υυμυυ 2
1 4    (23) 

were  and y  are the first derivatives of the edge ma  f  of the ima e xf f p g I . The edge 

map was derived as [ ]), y , w 3(),(),( xIyxGyxf ∗∇= σ ith =σ . Initial values for u  and 
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υ  we xf  an yfre d initu =  init =υ . Moreov , er μ  was se 29.0 and 80 total iterations 

were used for the calculation of the GVF field for all the 26 applications. Initial contours 

were placed close to the real ones. The GVF field was accompanied by a Gaussian 

potential and a pressure force and all together constituted the general external 

t to

energy field. 

 

 T-snakes were implemented according to Eq. 11. For the implementation of the T-snake 

the external force derived from a Gaussian potential field with 3=σ  was used, 

accompanied with a pressure force with constant weights. The initial seed point was 

chosen to be inside the object of interest. According to this seed point the algorithm 

initializes a square snake. 

 In the self-affine mapping system the size of the areas  was chosen to be twice the 

size of the areas , namely 

( ii Aa )

iA 2=r , so as condition 2 to hold. The searching area for the 

block-matching process was ]
4

,
4

[ nn
− , where n  the size of the area . As a criterion of 

measurement, minimum distance was used to calculate the difference between  and 

A

)(xg

. The number of iterations was set to 
log

2
log

+=
r

e

(( ag i )))(xiβ ν 1. In Eq. 21 p  was set to 1 

and  to 0. q

 Fig.3 presents comparatively optic disk extraction using the classical snake model, the 

GVF model, the T-snake and the self- affine mapping system. Manual segmentation of the 

optical disk is also presented in Fig.3 for visual comparison with the aforementioned 

automated methods. 

 For the comparative evaluation of the different deformable models cross-correlation 

coefficient between the real optic disk contour and the final contour extracted by every 

deformable model method was applied to the 26 retinal images. The real contours were 
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drawn by an expert. The cross-correlation coefficient was calculated according to the 

equation: 

∑
=

∑
=
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=
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   (24) 

Fig.4 presents cross-correlation coefficients for the four deformable model techniques and 

for the 26 retinal images. 

 Finally, Fig.5 shows the total segmentation time for the four deformable models for the 

26 retinal images. 

 

IV. Discussion 

 

 From Fig.3 it can be seen that the classical snake presents slightly superior behavior in 

comparison to GVF snake. The final contour of the classical model is smooth and 

approximates better the real one. GVF snakes is an alternative of the classical snake 

designed to detect complicated boundaries with high curvature and sharp edges. But the 

optic disk boundary does not have such characteristics, it is almost round. The range of the 

two methods is almost the same. The classical snake and the GVF snake must be initialized 

close to the real contour. According to Fig.4 the GVF snake algorithm is also slower than 

the classical snake method, mostly because of the extra time it needs to calculate the 

external GVF force. 

 T-snakes result in a satisfying optic disk contour, although the classical snake seems to 

be slightly better (Fig. 3b and e). The biggest advantage of the T-snake algorithm is its 

range. It is initialized in a point inside the optic disk. Moreover, the total segmentation 
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time of T-snake is small, smaller than any other deformable method. So, T-snake presents 

a robust and efficient segmentation technique. 

 Finally, the self-affine mapping system is superior in optic disk boundary extraction than 

the other techniques, according to Fig. 3. Furthermore, the algorithm is independent from 

optic disk size and image intensity. Also, with the choice of minimum distance as a 

matching criterion, the caging of the model from the vessels is avoided. The self-affine 

mapping system seems to present lower independence from initialization than the classical 

snake and the GVF snake. The initial contour is placed slightly away from the real one 

(Fig.6b). The total segmentation time of the algorithm is also adequate according to Fig. 5, 

since it is faster than the classical snake and the GVF snake. The self-affine mapping 

system succeeds also in high cross-correlation values (Fig. 4) similarly to the classical 

snake and the GVF snake, which, though, have been initialized close to the real boundary 

in order to achieve such cross-correlation values. T-snakes present smaller cross-

correlation values because they are not initialized close to the real optic disk contour. 

Another advantage of the self-affine mapping system is that this method is self-terminated, 

a characteristic that the other deformable methods do not present. 

 In general the self-affine mapping system succeeds in approximating very well the true 

optic disk boundary. However, the initial contour must be close to the true. The distance 

between the real and the initial contour depends on the value of . If  is increased 

the degrees of freedom in lining the initial contour are increased but the algorithm’s 

computation cost is augmented. 

maxe maxe
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V. Conclusions 

 

 In this work various methods of parametric elastic models were compared, namely the 

classical snake, the gradient vector field snake (GVF snake) and the topology-adaptive 

snake (t-snake). Also, the method of self-affine mapping is presented as an alternative of 

the elastic models. The self-affine mapping system was implemented using an adapting 

scheme. Moreover, Minimum Distance was introduced as an optimization criterion more 

suitable for optic disk boundary detection. All methods were applied to glaucomatic retinal 

images with the purpose of segmenting the optical disk. The methods are compared in 

terms of segmentation accuracy. The self-affine mapping system presents efficient 

segmentation time, segmentation accuracy and significant independence from 

initialization. 
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Figure captions 

 

Figure 1. a) Final contours with 8=n  (curve ) and a 32=n  (curve β ), b) Final contour 

using the adapting scheme (curve β ), curve  is the initial contour. a

 

Figure 2. Initial (curve ) and final (curve a β ) optic disk contour using the adapting 

scheme and MD as optimization criterion. 

 

Figure 3. Optic disk extraction with a) the classical snake (α=2, β=2, w=7, wp=0.05, 125 

total iterations), b) GVF snake (α=2, β=2, w=7, wp=0.05, μ=0.29, 80 iterations for GVF 

calculation and 125 total iterations), c) T-snake (α=20, β=20, w=71, wp=70, 45 total 

iterations), d) self-affine mapping system (emin=4, emax=32, r=2).  

 

Figure 4. Cross-correlation coefficients for the four deformable model techniques and for 

the 26 retinal images 

 

Figure 5. Total segmentation time for the four deformable model algorithms for the 26 

retinal images 

 

Figure 6. Examples of contour initialization for a) the classical snake and gvf snake and b) 

the self-affine mapping system 
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Fig. 1b 
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